Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
PeerJ Comput Sci ; 10: e1942, 2024.
Article in English | MEDLINE | ID: mdl-38660159

ABSTRACT

Breast and ovarian cancers are prevalent worldwide, with genetic factors such as BRCA1 and BRCA2 mutations playing a significant role. However, not all patients carry these mutations, making it challenging to identify risk factors. Researchers have turned to whole exome sequencing (WES) as a tool to identify genetic risk factors in BRCA-negative women. WES allows the sequencing of all protein-coding regions of an individual's genome, providing a comprehensive analysis that surpasses traditional gene-by-gene sequencing methods. This technology offers efficiency, cost-effectiveness and the potential to identify new genetic variants contributing to the susceptibility to the diseases. Interpreting WES data for disease-causing variants is challenging due to its complex nature. Machine learning techniques can uncover hidden genetic-variant patterns associated with cancer susceptibility. In this study, we used the extreme gradient boosting (XGBoost) and random forest (RF) algorithms to identify BRCA-related cancer high-risk genes specifically in the Saudi population. The experimental results exposed that the RF method scored superior performance with an accuracy of 88.16% and an area under the receiver-operator characteristic curve of 0.95. Using bioinformatics analysis tools, we explored the top features of the high-accuracy machine learning model that we built to enhance our knowledge of genetic interactions and find complex genetic patterns connected to the development of BRCA-related cancers. We were able to identify the significance of HLA gene variations in these WES datasets for BRCA-related patients. We find that immune response mechanisms play a major role in the development of BRCA-related cancer. It specifically highlights genes associated with antigen processing and presentation, such as HLA-B, HLA-A and HLA-DRB1 and their possible effects on tumour progression and immune evasion. In summary, by utilizing machine learning approaches, we have the potential to aid in the development of precision medicine approaches for early detection and personalized treatment strategies.

2.
J Epidemiol Glob Health ; 14(1): 162-168, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38231342

ABSTRACT

BACKGROUND: Lipodystrophy is a relatively rare, complex disease characterised by a deficiency of adipose tissue and can present as either generalised lipodystrophy (GLD) or partial lipodystrophy (PLD). The prevalence of this disease varies by region. This study aimed to identify the genetic variations associated with lipodystrophy in the southern part of Saudi Arabia. METHODOLOGY:  We conducted a retrospective study by recruiting nine patients from six families, recruiting the proband whole exome sequencing results or any other genetic test results, screening other family members using Sanger sequencing and analysing the carrier status of the latter. These patients were recruited from the Endocrinology and Diabetes Clinic at Jazan General Hospital and East Jeddah Hospital, both in the Kingdom of Saudi Arabia. RESULT: Eight patients were diagnosed with GLD, and one was diagnosed with PLD. Of the six families, four were consanguineously married from the same tribe, while the remaining belonged to the same clan. The majority of GLD patients had an AGPAT2 c.158del mutation, but some had a BSCL2 c.942dup mutation. The single PLD case had a PPARG c.1024C > T mutation but no family history of the disease. In all families evaluated in this study, some family members were confirmed to be carriers of the mutation observed in the corresponding patient. CONCLUSION:  Familial screening of relatives of patients with rare, autosomal recessive diseases, such as lipodystrophy, especially when there is a family history, allows the implementation of measures to prevent the onset or reduced severity of disease and reduces the chances of the pathogenic allele being passed onto future generations. Creating a national registry of patients with genetic diseases and carriers of familial pathogenic alleles will allow the assessment of preventive measures and accelerate disease intervention via gene therapy.


Subject(s)
Genetic Testing , Rare Diseases , Humans , Saudi Arabia/epidemiology , Male , Female , Retrospective Studies , Rare Diseases/diagnosis , Rare Diseases/genetics , Rare Diseases/epidemiology , Genetic Testing/methods , Genetic Testing/statistics & numerical data , Adult , Adolescent , Lipodystrophy/genetics , Lipodystrophy/epidemiology , Lipodystrophy/diagnosis , Lipodystrophy/prevention & control , Child , Pedigree , Young Adult , Mutation , Exome Sequencing/methods , Middle Aged
3.
ACS Biomater Sci Eng ; 10(1): 391-404, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38095213

ABSTRACT

The efficacy of neural electrode stimulation and recording hinges significantly on the choice of a neural electrode interface material. Transition metal carbides (TMCs), particularly titanium carbide (TiC), have demonstrated exceptional chemical stability and high electrical conductivity. Yet, the fabrication of TiC thin films and their potential application as neural electrode interfaces remains relatively unexplored. Herein, we present a systematic examination of TiC thin films synthesized through nonreactive radio frequency (RF) magnetron sputtering. TiC films were optimized toward high areal capacitance, low impedance, and stable electrochemical cyclability. We varied the RF power and deposition pressure to pinpoint the optimal properties, focusing on the deposition rate, surface roughness, crystallinity, and elemental composition to achieve high areal capacitance and low impedance. The best-performing TiC film showed an areal capacitance of 475 µF/cm2 with a capacitance retention of 93% after 5000 cycles. In addition, the electrochemical performance of the optimum film under varying scanning rates demonstrated a stable electrochemical performance even under dynamic and fast-changing stimulation conditions. Furthermore, the in vitro cell culture for 3 weeks revealed excellent biocompatibility, promoting cell growth compared with a control substrate. This work presents a novel contribution, highlighting the potential of sputtered TiC thin films as robust neural electrode interface materials.


Subject(s)
Cell Culture Techniques , Electrodes
4.
Ageing Res Rev ; 89: 101965, 2023 08.
Article in English | MEDLINE | ID: mdl-37268112

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder. The degeneration of dopaminergic neurons in the midbrain is primarily responsible for the onset of the disease. The major challenge faced in the treatment of PD is the blood-brain barrier (BBB), which impedes the delivery of therapeutics to targeted locations. To address this issue, lipid nanosystems have been used for the precise delivery of therapeutic compounds in anti-PD therapy. In this review, we will discuss the application and clinical significance of lipid nanosystem in delivering therapeutic compounds for anti-PD treatment. These medicinal compounds include ropinirole, apomorphine, bromocriptine, astaxanthin, resveratrol, dopamine, glyceryl monooleate, levodopa, N-3,4-bis(pivaloyloxy)- dopamine and fibroblast growth factor, which have significant potential to treat PD in the early stage. This review, in a nutshell, will pave the way for researchers to develop diagnostic and potential therapeutic approaches using nanomedicine to overcome the challenges posed by the BBB in delivering therapeutic compounds for PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Dopamine , Levodopa/therapeutic use , Lipids
5.
Brain Sci ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36831786

ABSTRACT

Finding a link between a hormone and microRNAs (miRNAs) is of great importance since it enables the adjustment of genetic composition or cellular functions without needing gene-level interventions. The dicer-mediated cleavage of precursor miRNAs is an interface link between miRNA and its regulators; any disruption in this process can affect neurogenesis. Besides, the hormonal regulation of miRNAs can occur at the molecular and cellular levels, both directly, through binding to the promoter elements of miRNAs, and indirectly, via regulation of the signaling effects of the post-transcriptional processing proteins. Estrogenic hormones have many roles in regulating miRNAs in the brain. This review discusses miRNAs, their detailed biogenesis, activities, and both the general and estrogen-dependent regulations. Additionally, we highlight the relationship between miR-29, miR-9, and estrogens in the nervous system. Such a relationship could be a possible etiological route for developing various neurodegenerative disorders.

6.
J Med Virol ; 95(1): e28412, 2023 01.
Article in English | MEDLINE | ID: mdl-36527332

ABSTRACT

Considering the global trend to confine the COVID-19 pandemic by applying various preventive health measures, preprocedural mouth rinsing has been proposed to mitigate the transmission risk of SARS-CoV-2 in dental clinics. The study aimed to investigate the effect of different mouth rinses on salivary viral load in COVID-19 patients. This study was a single-center, randomized, double-blind, six-parallel-group, placebo-controlled clinical trial that investigated the effect of four mouth rinses (1% povidone-iodine, 1.5% hydrogen peroxide, 0.075% cetylpyridinium chloride, and 80 ppm hypochlorous acid) on salivary SARS-CoV-2 viral load relative to the distilled water and no-rinse control groups. The viral load was measured by quantitative reverse transcription PCR (RT-qPCR) at baseline and 5, 30, and 60 min post rinsing. The viral load pattern within each mouth rinse group showed a reduction overtime; however, this reduction was only statistically significant in the hydrogen peroxide group. Further, a significant reduction in the viral load was observed between povidone-iodine, hydrogen peroxide, and cetylpyridinium chloride compared to the no-rinse group at 60 min, indicating their late antiviral potential. Interestingly, a similar statistically significant reduction was also observed in the distilled water control group compared to the no-rinse group at 60 min, proposing mechanical washing of the viral particles through the rinsing procedure. Therefore, results suggest using preprocedural mouth rinses, particularly hydrogen peroxide, as a risk-mitigation step before dental procedures, along with strict adherence to other infection control measures.


Subject(s)
COVID-19 , Mouthwashes , Humans , Mouthwashes/therapeutic use , SARS-CoV-2 , Hydrogen Peroxide , Povidone-Iodine/therapeutic use , Cetylpyridinium/therapeutic use , Pandemics , Viral Load , Water
7.
Metab Brain Dis ; 38(1): 61-68, 2023 01.
Article in English | MEDLINE | ID: mdl-36149588

ABSTRACT

Glioblastoma (GB) are aggressive tumors that obstruct normal brain function. While the skull cannot expand in response to cancer growth, the growing pressure in the brain is generally the first sign. It can produce more frequent headaches, unexplained nausea or vomiting, blurred peripheral vision, double vision, a loss of feeling or movement in an arm or leg, and difficulty speaking and concentrating; all depend on the tumor's location. GB can also cause vascular thrombi, damaging endothelial cells and leading to red blood cell leakage. Latest studies have revealed the role of single nucleotide polymorphisms (SNPs) in developing and spreading cancers such as GB and breast cancer. Many discovered SNPs are associated with GB, particularly in great abundance in the promoter region, creating polygenetic vulnerability to glioma. This study aims to compile a list of some of the most frequent and significant SNPs implicated with GB formation and proliferation.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Endothelial Cells/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain/pathology
8.
Toxics ; 10(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36548560

ABSTRACT

Tobacco/nicotine is one of the most toxic and addictive substances and continues to pose a significant threat to global public health. The harmful effects of smoking/nicotine affect every system in the human body. Nicotine has been associated with effects on endocrine homeostasis in humans such as the imbalance of gonadal steroid hormones, adrenal corticosteroid hormones, and thyroid hormones. The present study was conducted to characterize the structural binding interactions of nicotine and its three important metabolites, cotinine, trans-3'-hydroxycotinine, and 5'-hydroxycotinine, against circulatory hormone carrier proteins, i.e., sex-hormone-binding globulin (SHBG), corticosteroid-binding globulin (CBG), and thyroxine-binding globulin (TBG). Nicotine and its metabolites formed nonbonded contacts and/or hydrogen bonds with amino acid residues of the carrier proteins. For SHBG, Phe-67 and Met-139 were the most important amino acid residues for nicotine ligand binding showing the maximum number of interactions and maximum loss in ASA. For CBG, Trp-371 and Asn-264 were the most important amino acid residues, and for TBG, Ser-23, Leu-269, Lys-270, Asn-273, and Arg-381 were the most important amino acid residues. Most of the amino acid residues of carrier proteins interacting with nicotine ligands showed a commonality with the interacting residues for the native ligands of the proteins. Taken together, the results suggested that nicotine and its three metabolites competed with native ligands for binding to their carrier proteins. Thus, nicotine and its three metabolites may potentially interfere with the binding of testosterone, estradiol, cortisol, progesterone, thyroxine, and triiodothyronine to their carrier proteins and result in the disbalance of their transport and homeostasis in the blood circulation.

9.
Cancer Cell Int ; 22(1): 387, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482387

ABSTRACT

BACKGROUND: Glioblastomas (GBs) are characterised as one of the most aggressive primary central nervous system tumours (CNSTs). Single-cell sequencing analysis identified the presence of a highly heterogeneous population of cancer stem cells (CSCs). The proteins anterior gradient homologue 2 (AGR2) and glucose-regulated protein 78 (GRP78) are known to play critical roles in regulating unfolded protein response (UPR) machinery. The UPR machinery influences cell survival, migration, invasion and drug resistance. Hence, we investigated the role of AGR2 in drug-resistant recurrent glioblastoma cells. METHODS: Immunofluorescence, biological assessments and whole exome sequencing analyses were completed under in situ and in vitro conditions. Cells were treated with CNSTs clinical/preclinical drugs taxol, cisplatin, irinotecan, MCK8866, etoposide, and temozolomide, then resistant cells were analysed for the expression of AGR2. AGR2 was repressed using single and double siRNA transfections and combined with either temozolomide or irinotecan. RESULTS: Genomic and biological characterisations of the AGR2-expressed Jed66_GB and Jed41_GB recurrent glioblastoma tissues and cell lines showed features consistent with glioblastoma. Immunofluorescence data indicated that AGR2 co-localised with the UPR marker GRP78 in both the tissue and their corresponding primary cell lines. AGR2 and GRP78 were highly expressed in glioblastoma CSCs. Following treatment with the aforementioned drugs, all drug-surviving cells showed high expression of AGR2. Prolonged siRNA repression of a particular region in AGR2 exon 2 reduced AGR2 protein expression and led to lower cell densities in both cell lines. Co-treatments using AGR2 exon 2B siRNA in conjunction with temozolomide or irinotecan had partially synergistic effects. The slight reduction of AGR2 expression increased nuclear Caspase-3 activation in both cell lines and caused multinucleation in the Jed66_GB cell line. CONCLUSIONS: AGR2 is highly expressed in UPR-active CSCs and drug-resistant GB cells, and its repression leads to apoptosis, via multiple pathways.

10.
Healthcare (Basel) ; 10(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36360499

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a serious issue and a leading cause of death and disability worldwide. Caregivers of TBI patients experience psychological distress and a variety of social and financial issues. The present study aims to investigate the caregiver's burden and the factors that influence this burden. Furthermore, the present study will find out the association of religious practice, religious coping relations and psychological distress among caregivers of children affected with TBI. METHODS: A cross-sectional survey was conducted on 302 caregivers of children with TBI using Duke University Religion Index (DURL) for religious practice. General Health Questionaire-12 (GHQ-12) was used for anxiety and depression and Brief Religious Coping Scale (RCOPE) was used for coping strategies. The caregivers were conveniently chosen from different regions of Khyber Pakhtunkhwa province and data was collected from different tertiary care hospitals in Peshawar. RESULTS: Forty-nine (49) % of caregivers score ≥ 3 on GHQ suffer from psychological distress with a Mean of 20.957 ± 4.175). Positive coping methods were mostly used by caregivers than negative coping have a low level of distress with a Mean Positive Coping (P-COPE ) of 6.93 ± 0.41, Mean of Negative Coping (N-COPE) 0.486 ± 1.023. In religious practice, caregivers mostly participate in Organized Reliogious Activities (ORA) or some Non-Organized Reliogious Activities (NORA) with a Mean ORA of 4.20 ± 1.27, and NORA Mean of 4.17 ± 1.37 used by the caregivers. Coping methods were related to Caregiver psychological distress (GHQ-12 and P-COPE co-relation scores are (ρ -0.022, p b 0.05); GHQ-12 scores and N-COPE (ρ + 0.221=, p b 0.001). There is a negative correlation between GHQ 12 and PCOPE, while GHQ12 is positively correlated with NCOPE. CONCLUSION: According to this study, there is a significant association between religious coping methods, religious practice, and psychological distress among caregivers of children with traumatic brain injury.

11.
Article in English | MEDLINE | ID: mdl-36231176

ABSTRACT

BACKGROUND: Biobanking is a critical cornerstone of the global shift towards precision medicine (PM). This transformation requires smooth and informed interaction between a range of stakeholders involved in the healthcare system. In Saudi Arabia, there is still insufficient awareness of the importance of biobanking and its potential benefits for patients, the healthcare system, and society as a whole. The purpose of this study was to determine the biobanking knowledge of Saudi healthcare providers and the potential factors that might influence their self-reported attitudes toward biospecimen donation and biobanking. METHODS: A cross-sectional study was conducted targeting 636 healthcare providers in Makkah province using a structured, self-administered questionnaire. RESULTS: The study had a response rate of 61%. The mean knowledge level about biobanks was 3.5 (±1.8) out of 7. About one-third of the participants were aware of the Human Genome Project (HGP) (35%) or the term "biobank" (34%). The mean rating of their attitude was 37.3 (±4.3) out of 55. Most participants (74%) had a positive attitude toward medical research. Job position, general health, previous blood tests, knowledge of biobanking, and attitudes toward biomedical research were significantly related and predictors of willingness to donate biospecimens (p < 0.05). However, concerns about biospecimen misuse and confidentiality were the main reasons for not donating biospecimens. CONCLUSIONS: This study has shown that healthcare providers mostly lack basic knowledge about HGP and biobanks and their roles and activities, and therefore are generally disinclined to actively participate in biospecimens' collection and management. It is recommended that medical trainees receive more education and awareness about biobanks and the latest personalized healthcare approaches to improve translational research outcomes and achieve precision medicine.


Subject(s)
Biological Specimen Banks , Biomedical Research , Attitude , Cross-Sectional Studies , Health Knowledge, Attitudes, Practice , Health Personnel , Humans , Saudi Arabia
12.
Front Syst Neurosci ; 16: 1000495, 2022.
Article in English | MEDLINE | ID: mdl-36211589

ABSTRACT

Ever since the dawn of antiquity, people have strived to improve their cognitive abilities. From the advent of the wheel to the development of artificial intelligence, technology has had a profound leverage on civilization. Cognitive enhancement or augmentation of brain functions has become a trending topic both in academic and public debates in improving physical and mental abilities. The last years have seen a plethora of suggestions for boosting cognitive functions and biochemical, physical, and behavioral strategies are being explored in the field of cognitive enhancement. Despite expansion of behavioral and biochemical approaches, various physical strategies are known to boost mental abilities in diseased and healthy individuals. Clinical applications of neuroscience technologies offer alternatives to pharmaceutical approaches and devices for diseases that have been fatal, so far. Importantly, the distinctive aspect of these technologies, which shapes their existing and anticipated participation in brain augmentations, is used to compare and contrast them. As a preview of the next two decades of progress in brain augmentation, this article presents a plausible estimation of the many neuroscience technologies, their virtues, demerits, and applications. The review also focuses on the ethical implications and challenges linked to modern neuroscientific technology. There are times when it looks as if ethics discussions are more concerned with the hypothetical than with the factual. We conclude by providing recommendations for potential future studies and development areas, taking into account future advancements in neuroscience innovation for brain enhancement, analyzing historical patterns, considering neuroethics and looking at other related forecasts.

13.
Ann Med ; 54(1): 2861-2875, 2022 12.
Article in English | MEDLINE | ID: mdl-36263866

ABSTRACT

Introduction: Phytochemicals have garnered much attention because they are useful in managing several human diseases. Yohimbine is one such phytochemical with significant pharmacological potential and could be exploited for research by medicinal chemists. It is an indole alkaloid obtained from various natural/synthetic sources.Aims and Results: The research on yohimbine started early, and its use as a stimulant and aphrodisiac by humans has been reported for a long time. The pharmacological activity of yohimbine is mediated by the combined action of the central and peripheral nervous systems. It selectively blocks the pre and postsynaptic α2-adrenergic receptors and has a moderate affinity for α1 and α2 subtypes. Yohimbine also binds to other behaviourally relevant monoaminergic receptors in the following order: α-2 NE > 5HT-1A>, 5HT-1B > 1-D > D3 > D2 receptors.Conclusion: The current review highlights some significant findings that contribute to developing yohimbine-based drugs. It also highlights the therapeutic potential of yohimbine against selected human diseases. However, further research is recommended on the pharmacokinetics, molecular mechanisms, and drug safety requirements using well-designed randomized clinical trials to produce yohimbine as a pharmaceutical agent for human use.Key MessagesYohimbine is a natural indole alkaloid with significant pharmacological potential.Humans have used it as a stimulant and aphrodisiac from a relatively early time.It blocks the pre- and postsynaptic α2-adrenergic receptors that could be exploited for managing erectile dysfunction, myocardial dysfunction, inflammatory disorders, and cancer.


Subject(s)
Adrenergic alpha-Antagonists , Aphrodisiacs , Male , Humans , Yohimbine/pharmacology , Yohimbine/therapeutic use , Adrenergic alpha-Antagonists/pharmacology , Receptors, Adrenergic, alpha-2/metabolism , Pharmaceutical Preparations
14.
Front Aging Neurosci ; 14: 878276, 2022.
Article in English | MEDLINE | ID: mdl-36072483

ABSTRACT

Alzheimer's disease (AD) is a severe neurodegenerative disorder of the brain that manifests as dementia, disorientation, difficulty in speech, and progressive cognitive and behavioral impairment. The emerging therapeutic approach to AD management is the inhibition of ß-site APP cleaving enzyme-1 (BACE1), known to be one of the two aspartyl proteases that cleave ß-amyloid precursor protein (APP). Studies confirmed the association of high BACE1 activity with the proficiency in the formation of ß-amyloid-containing neurotic plaques, the characteristics of AD. Only a few FDA-approved BACE1 inhibitors are available in the market, but their adverse off-target effects limit their usage. In this paper, we have used both ligand-based and target-based approaches for drug design. The QSAR study entails creating a multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model using 552 molecules with acceptable statistical performance (R 2 = 0.82, Q 2 loo = 0.81). According to the QSAR study, the activity has a strong link with various atoms such as aromatic carbons and ring Sulfur, acceptor atoms, sp2-hybridized oxygen, etc. Following that, a database of 26,467 food compounds was primarily used for QSAR-based virtual screening accompanied by the application of the Lipinski rule of five; the elimination of duplicates, salts, and metal derivatives resulted in a truncated dataset of 8,453 molecules. The molecular descriptor was calculated and a well-validated 6-parametric version of the QSAR model was used to predict the bioactivity of the 8,453 food compounds. Following this, the food compounds whose predicted activity (pKi) was observed above 7.0 M were further docked into the BACE1 receptor which gave rise to the Identification of 4-(3,4-Dihydroxyphenyl)-2-hydroxy-1H-phenalen-1-one (PubChem I.D: 4468; Food I.D: FDB017657) as a hit molecule (Binding Affinity = -8.9 kcal/mol, pKi = 7.97 nM, Ki = 10.715 M). Furthermore, molecular dynamics simulation for 150 ns and molecular mechanics generalized born and surface area (MMGBSA) study aided in identifying structural motifs involved in interactions with the BACE1 enzyme. Molecular docking and QSAR yielded complementary and congruent results. The validated analyses can be used to improve a drug/lead candidate's inhibitory efficacy against the BACE1. Thus, our approach is expected to widen the field of study of repurposing nutraceuticals into neuroprotective as well as anti-cancer and anti-viral therapeutic interventions.

15.
Front Cell Infect Microbiol ; 12: 964265, 2022.
Article in English | MEDLINE | ID: mdl-36034704

ABSTRACT

An outbreak of coronavirus disease 2019 (COVID-19) emerged in China in December 2019 and spread so rapidly all around the globe. It's continued and spreading more dangerously in India and Brazil with higher mortality rate. Understanding of the pathophysiology of COVID-19 depends on unraveling of interactional mechanism of SARS-CoV-2 and human immune response. The immune response is a complex process, which can be better understood by understanding the immunological response and pathological mechanisms of COVID-19, which will provide new treatments, increase treatment efficacy, and decrease mortality associated with the disease. In this review we present a amalgamate viewpoint based on the current available knowledge on COVID-19 which includes entry of the virus and multiplication of virus, its pathological effects on the cellular level, immunological reaction, systemic and organ presentation. T cells play a crucial role in controlling and clearing viral infections. Several studies have now shown that the severity of the COVID-19 disease is inversely correlated with the magnitude of the T cell response. Understanding SARS-CoV-2 T cell responses is of high interest because T cells are attractive vaccine targets and could help reduce COVID-19 severity. Even though there is a significant amount of literature regarding SARS-CoV-2, there are still very few studies focused on understanding the T cell response to this novel virus. Nevertheless, a majority of these studies focused on peripheral blood CD4+ and CD8+ T cells that were specific for viruses. The focus of this review is on different subtypes of T cell responses in COVID-19 patients, Th17, follicular helper T (TFH), regulatory T (Treg) cells, and less classical, invariant T cell populations, such as δγ T cells and mucosal-associated invariant T (MAIT) cells etc that could influence disease outcome.


Subject(s)
COVID-19 , Brazil , CD8-Positive T-Lymphocytes , Humans , SARS-CoV-2 , T-Lymphocyte Subsets
16.
Transl Pediatr ; 11(6): 1040-1049, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35800288

ABSTRACT

Background: Dysembryoplastic neuroepithelial tumours (DNETs) are rare, with only a few reported lethal cases. Currently, there are focused efforts by neuro-oncology professionals to reveal the molecular characterisations of individual central nervous system tumours (CNSTs). Here, we report the status of cancer stem cell (CSC) genes associated with resilience and drug resistance in a paediatric DNET, since the deregulations and variations of CSC genes may prove critical to these tumours' molecular characterisations. Case Description: Immunofluorescence, clonogenic assay and whole exome sequencing (WES) were applied to the patient's tissue and its corresponding cell line. The case is for of a 6-year-old boy with intractable epilepsy and unremarkable physical and neurological examinations. Following magnetic resonance imaging (MRI) and histopathological tests, the patient was diagnosed with DNET. The child underwent a right posterior temporoparietooccipital neuronavigation-assisted craniotomy. Several CSC markers were upregulated in situ, including the metastasis-related protein, anterior gradient 2 (AGR2; 67%), and the Wnt-signalling-related protein, frizzled class receptor 9 (FZD9; 79%). The cell line possessed a similar DNA profile as the original tissue, stained positive for the tumorigenic marker [BMI1 proto-oncogene (BMI)] and CSC markers, and displayed drug resistance. Variants identified in the tissue DNA, which are listed in the catalogue of somatic mutations in cancer (COSMIC) database for genes previously known to be necessary for the development of the embryonic brain, included variants in the cell division cycle 27 (CDC27) gene. Conclusions: we report the in situ and in vitro presence of CSCs in a paediatric DNET.

17.
Glob Chall ; 6(7): 2200008, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35860397

ABSTRACT

Rapid lateral flow immune-assays are point-of-care diagnostic tools that are easy to use, cheap, and do not need centralized infrastructure. Therefore, these devices are appealing for rapid detection of the humoral immune responses to infections, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The novel technique introduced here uses a complex of anti-SARS-CoV-2 N-protein antibodies conjugated to gold nanoparticles that are bound to five SARS-CoV-2 N protein conjugated to gold nanoparticles to amplify the signals obtained from the conjugated SARS-CoV-2 N protein and to enhance the assay detection limit. To validate the performance of the adopted lateral flow, serum from SARS-CoV-2 seropositive individuals and prepandamic negative samples are tested and compared to a validated enzyme-linked immunosorbent assay (ELISA) for the detection of SARS-CoV-2 N protein specific IgG and IgM antibodies. The data shows that the designed lateral flow assay has an excellent sensitivity and specificity upon detecting IgM and IgG antibodies by applying only 2 µL from the serum sample to the adopted strips. Taken together, the developed lateral flow immunoassay assay provides a rapid, specific, and highly sensitive means to detect the immune responses against SARS-CoV-2 with only 2 µL from the serum sample.

18.
Article in English | MEDLINE | ID: mdl-35368755

ABSTRACT

Poly (ADP-ribose) polymerase-1 (PARP-1) has been recognized as a prospective target for the development of novel cancer therapeutics. Several PARP-1 inhibitors are currently being considered for anticancer drug development and clinical investigation. Lately, natural compounds seem to be excellent alternative drug candidates for cancer treatment. Rauwolfia serpentina is a medicinal plant traditionally used in Indian subcontinents to treat various diseases. This study has been designed to identify the bioactive compounds derived from R. serpentina for possible binding and inhibition of PARP-1 using the molecular docking approach. Thirteen compounds were found to interact with the target with a binding affinity greater than the value of -9.0 kcal/mol. After screening the physicochemical properties, only 5 ligands (ajmalicine, yohimbine, isorauhimbine, rauwolscine, and 1,2-dihydrovomilenine) were found to obey all the parameters of Lipinski's rule of five, showed maximum drug-likeness, and possess no significant toxicity. These ligands displayed strong interactions with target PARP-1 via several hydrogen bonds and hydrophobic interactions. Therefore, these identified compounds derived from R. serpentina can be considered for drug development against cancer-targeting PARP-1.

19.
Front Mol Biosci ; 9: 783735, 2022.
Article in English | MEDLINE | ID: mdl-35237656

ABSTRACT

Wnt signalling receptors, Frizzleds (FZDs), play a pivotal role in many cellular events during embryonic development and cancer. Female breast cancer (BC) is currently the worldwide leading incident cancer type that cause 1 in 6 cancer-related death. FZD receptors expression in cancer was shown to be associated with tumour development and patient outcomes including recurrence and survival. FZD6 received little attention for its role in BC and hence we analysed its expression pattern in a Saudi BC cohort to assess its prognostic potential and unravel the impacted signalling pathway. Paraffin blocks from approximately 405 randomly selected BC patients aged between 25 and 70 years old were processed for tissue microarray using an automated tissue arrayer and then subjected to FZD6 immunohistochemistry staining using the Ventana platform. Besides, Ingenuity Pathway Analysis (IPA) knowledgebase was used to decipher the upstream and downstream regulators of FZD6 in BC. TargetScan and miRabel target-prediction databases were used to identify the potential microRNA to regulate FZD6 expression in BC. Results showed that 60% of the BC samples had a low expression pattern while 40% showed a higher expression level. FZD6 expression analysis showed a significant correlation with tumour invasion (p < 0.05), and borderline significance with tumour grade (p = 0.07). FZD6 expression showed a highly significant association with the BC patients' survival outcomes. This was mainly due to the overall patients' cohort where tumours with FZD6 elevated expression showed higher recurrence rates (DFS, p < 0.0001, log-rank) and shorter survival times (DSS, p < 0.02, log-rank). Interestingly, the FZD6 prognostic value was more potent in younger BC patients as compared to those with late onset of the disease. TargetScan microRNA target-prediction analysis and validated by miRabel showed that FZD6 is a potential target for a considerable number of microRNAs expressed in BC. The current study demonstrates a potential prognostic role of FZD6 expression in young BC female patients and provides a better understanding of the involved molecular silencing machinery of the Wnt/FZD6 signalling. Our results should provide a better understanding of FZD6 role in BC by adding more knowledge that should help in BC prevention and theranostics.

20.
Vaccines (Basel) ; 10(2)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35214610

ABSTRACT

INTRODUCTION: Studies assessing immune responses following Pfizer-BioNTech BNT162b2 mRNA COVID-19 (Pfizer) and ChAdOx1 nCoV-19 AZD1222 (AstraZeneca) vaccines in patients with hemoglobinopathy are non-existent in the literature despite being thought at high risk of infection. METHODS: Prospectively, we collected serum from patients with hemoglobinopathies at least 14 days post vaccine and measured neutralizing antibodies (nAb) in addition to binding antibodies using in-house assays. RESULTS: All 66 participants mounted a significant binding antibody response (100%), but nAbs were detected in (56/66) post-vaccine with a rate of 84.5%. Age, gender, vaccine type, spleen status, hydroxyurea use, and hyperferritinemia did not affect the rate significantly. While 23/32 (71.8%) patients receiving only one dose of the vaccine were able to mount a positive response, 33/34 (97.05%) of those who had two doses of any vaccine type had a significant nAbs response. Patients who had anti-nucleocapsid (N), signifying asymptomatic infection in the past, were able to produce nAbs (31/31). No nAbs were detected in 10/35 (28.5%) patients with no anti-N antibodies. CONCLUSION: Our results provide supportive data when advising patients with hemoglobinopathy to receive COVID-19 vaccines and ensure booster doses are available for better immunity. Whenever available, measurement of nAb is recommended.

SELECTION OF CITATIONS
SEARCH DETAIL
...